SHOW WORK FOR FULL CREDIT

NO CALCULATORS

- 1. Peter, Paul, and Mary each flip identical biased coins, and they each stop flipping the first time their own coin is heads. The number of flips for Peter, Paul, and Mary, are Y_1 , Y_2 , and Y_3 , respectively, each independent and having geometric distribution with mean 6. Define $U = Y_1 + Y_2 + Y_3$.
 - (a) Compute E(U) by finding the moment generating function for U in terms of those of Y_1 , Y_2 , and Y_3 , and then identifying the mean of the resulting distribution.
 - (b) Compute E(U) using properties of expected value.

(a)
$$M_{Y_{i}}(t) = \frac{pe^{t}}{1-(1-p)e^{t}}$$
 with $\frac{1}{p} = E(Y_{i}) = (0 \Rightarrow) p = \frac{1}{6}$.

(b) $M_{U}(t) = E(e^{tU}) = E(e^{t(Y_{i}+Y_{2}+Y_{3})}) = E(e^{tY_{i}}e^{tY_{2}}e^{tY_{3}}) = \frac{3}{indip} = \frac{3}{indip} = \frac{1}{indip} = \frac{pe^{t}}{1-(1-p)e^{t}}$.

(b) $E(u) = E(Y_{i}) + E(Y_{2}) + E(Y_{3}) = 3 \cdot (6 = 18)$

Thus U is negative binomial with $r = 3$, and $E(u) = \frac{1}{p} = \frac{3}{16} = \frac{18}{18}$

- 2. Y_1 and Y_2 are discrete random variables whose joint distribution $p(y_1, y_2)$ is given in the table.
 - (a) Determine the marginal probability functions $p_1(y_1)$ and $p_2(y_2)$.
 - (b) Compute $P(Y_1 = 3 | Y_2 = 1)$.
 - (c) Are Y_1 and Y_2 independent? If yes, explain why. If not, re-define $p(y_1, y_2)$ so that Y_1 and Y_2 are independent but have the same marginal probability functions as in (a).

(b)
$$P(Y_1=3|Y_2=1) = P(3,1) = \frac{.06}{.3} = \frac{1}{5}$$

(c) No.
$$p(2,1) = .12 \neq p_1(2)p_2(1) = (.3)(.3) = .09$$
.
to make Y_1, Y_2 independent with same maginals, need $p(y_1, y_2) = p_1(y_1)p_2(y_2)$ for all y_1, y_2 .
redefine $p(3,1) = .09$ $p(3,1) = .09$

p(2,2) = .21 p(3,2) = .21

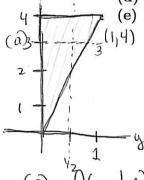
3. (16pts) Let Y_1 and Y_2 be continuous random variables with joint density

$$f(y_1, y_2) = \begin{cases} \frac{1}{2}, & 0 \le y_2 \le 4, & 0 \le y_1 \le 1, & 4y_1 \le y_2 \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Sketch the region of support of $f(y_1, y_2)$ (where $f(y_1, y_2) > 0$).
- (b) Compute the marginal probability densities $f_1(y_1)$ and $f_2(y_2)$.
- (c) Compute the conditional probability density of Y_1 given that $Y_2 = 1$.

(d) Compute $P(Y_1 \le 1/2 | Y_2 \le 3)$.

(e) Are Y_1 and Y_2 independent? Briefly explain why or why not.



(b)
$$f_1(y_1) = \int_{4y_1}^{4} \frac{1}{2} dy_2 = \frac{y_2}{2} \Big|_{4y_1}^{4} = \frac{1}{2} - \partial y_1 = 2 - 2y_1$$

$$f_2(y_2) = \int_{0}^{y_2/4} \frac{1}{2} dy_1 = \frac{y_1}{2} \Big|_{y_2}^{y_2/4} = \frac{y_2}{2} \Big|_{y_2}^{y$$

$$f(y,1) = f(y,1) = \frac{1}{2} = |4|, 0 = y, = 4$$

(d)
$$P(Y_1 = \frac{1}{2}|Y_2 = 3) = \frac{P(Y_1 = \frac{1}{2}, Y_2 = 3)}{P(Y_2 = 3)} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_1}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{16}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2 dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y_1}^3 \frac{1}{2} dy_2}{S_0^3 \int_{4y_1}^3 \frac{1}{2} dy_2} = \frac{S_0^{\frac{1}{2}} \int_{4y$$

4. Assume that X and U are random variables with

$$E(X) = -2$$
 $V(X) = 3$
 $E(U) = 1$ $V(U) = 5$
 $E(XY) = 1$.

- (a) Compute E(4X 2U).
- (b) Compute V(4X 2U).
- (c) Are X and U independent? Briefly explain why or why not.

(b)
$$V(4x-3u) = 16V(x) + (-3)^2V(u) + 2(4)(-3)Cov(x,u) = 3$$

 $Cov(x,u) = E(xu) - E(x)E(u) = 1 - (-3)(1) = 3$

5. On a typical day, a store sells a fraction Y_1 of its stock of milk and a fraction Y_2 of its stock of flour. The store's revenue from these sales is $R = 400Y_1 + 100Y_2$. The joint density function for Y_1 and Y_2 is

$$f(y_1, y_2) = \begin{cases} y_1 + y_2, & 0 \le y_1 \le 1, & 0 \le y_2 \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Compute E(R).
- (b) Are Y_1 and Y_2 independent? Briefly explain why or why not.

(a)
$$E(Y_1) = S_0^1 S_0^1 (y_1^2 + y_1 y_2) dy_2 dy_1 = S_0^1 (y_1^2 y_2 + y_1 y_2^2) |_0^1 dy_1 = S_0^1 S_0^2 (y_1^2 + y_1^2) dy_1$$

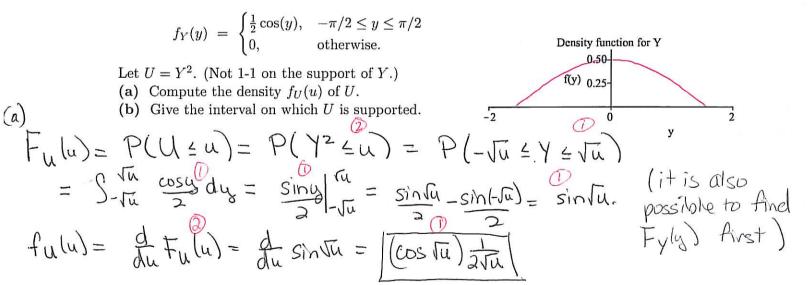
$$= y_3^3 + y_1^2 |_0^1 = \frac{1}{3} + \frac{1}{4} = \left[\frac{7}{12}\right]_0^3$$

By symmetry of y_1 and y_2 , $E(Y_2) = \left[\frac{7}{12}\right]_0^3$

So $E(R) = E(400Y_1 + 1000Y_2) = 400E(Y_1) + 100E(Y_2) = \frac{3500}{12} = \frac{879}{3}$

(b)[No.) fly, yz) cannot factor into fily,).fzlyz) even though the support of fly, yz) is a rectangle.

6. Assume Y is a continuous random variable with joint density function



(b) since
$$-\frac{1}{3} \leq 4 \leq \frac{1}{3} \leq 3$$

[O \le U \le \frac{17}{4}]

(we might exclude O since full) is undefined)

7. Let Y be a continuous random variable with density function

$$f_Y(y) = \begin{cases} \frac{5}{y^2}, & y > 5\\ 0, & \text{otherwise.} \end{cases}$$

Define $U = 3\ln(Y - 5)$.

4 = 12

(a) Compute the density function
$$f_U(u)$$
 for U .

(b) Give the interval of support of U .

(a) Via formula, $f_U(u) = f_V(h^{-1}(u)) \left| \frac{dh^{-1}}{du} \right|$
 $h^{-1}(u)$: $u = 3\ln(u_0 - 5)$ so $f_U(u) = \frac{5}{(5 + e^{u/3})^2}$, $\frac{1}{3}e^{u/3} = \frac{1}{3(5 + e^{u/3})^2}$
 $e^{u/3} = u_0 - 5$
 $h^{-1}(u) = 5 + e^{u/3}$
 $h^{-1}(u) = 5 + e^{u/3}$
 $h^{-1}(u) = \frac{1}{3}e^{u/3}$
 $h^{-1}(u) = \frac{1}{3}e^{u/3}$

8. Let Y_1, Y_2, \ldots, Y_{16} be independent random variables each with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2$. They represent 16 repeated independent samples from the same population. The function

$$\overline{Y} := \frac{Y_1 + Y_2 + \dots + Y_{16}}{16}$$

is called the sample mean of the population. Use Tschebycheff's Theorem to find the probability that \overline{Y} is within $\sigma/3$ of $E(\overline{Y})$.

that Y is within
$$\sigma/3$$
 of $E(Y)$.

$$E(\overline{Y}) = E\left(\underbrace{\underbrace{\sum_{i=1}^{l_{e}} Y^{i}}_{l_{e}}}\right) = \underbrace{\frac{1}{l_{e}}}_{i=1}^{l_{e}} E(Y_{i}) = \underbrace{\frac{1}{l_{e}}}_{i=1}^{l_{e}} I(e^{i}) = \mu.$$

$$V(\overline{Y}) = V\left(\underbrace{\underbrace{\sum_{i=1}^{l_{e}} Y^{i}}_{l_{e}}}\right) = \underbrace{\underbrace{\frac{1}{l_{e}}}_{i=1}^{l_{e}}}_{i=1}^{l_{e}} V(\underbrace{\frac{Y^{i}}{l_{e}}}) + \underbrace{\underbrace{\sum_{i=1}^{l_{e}} V(\underbrace{\frac{Y^{i}}{l_{e}}}, \underbrace{\frac{Y^{i}}{l_{e}}}_{l_{e}})}_{l_{e}}}_{l_{e}} + \underbrace{\underbrace{\sum_{i=1}^{l_{e}} V(\underbrace{\frac{Y^{i}}{l_{e}}}, \underbrace{\frac{Y^{i}}{l_{e}}}_{l_{e}})}_{l_{e}}}_{l_{e}}}_{l_{e}} + \underbrace{\underbrace{\sum_{i=1}^{l_{e}} V(\underbrace{\frac{Y^{i}}{l_{e}}}, \underbrace{\frac{Y^{i}}{l_{e}}}_{l_{e}})}_{l_{e}}}_{l_{e}}}_{l_{e}} + \underbrace{\underbrace{\sum_{i=1}^{l_{e}} V(\underbrace{\frac{Y^{i}}{l_{e}}}, \underbrace{\frac{Y^{i}}{l_{e}}}_{l_{e}})}_{l_{e}}}_{l_{e}}}_{l_{e}}}_{l_{e}}}_{l_{e}}}_{l_{e}}}_{l_{e}}$$

$$= \underbrace{\underbrace{\sum_{i=1}^{l_{e}} V(Y_{i})}_{l_{e}}}_{l_{$$